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The temperature and strain rate dependence of stress-strain cycles of poly(methyl methacrylate) (PMMA) 
networks are investigated. The van der Waals theory of polymer networks describes the quasi-static 
stress-strain behaviour. Time-dependent effects during deformation are treated within the framework of 
irreversible thermodynamics. The Gibbs function of the network is extended by an appropriate set of 
hidden variables. The orthogonal relaxation modes of the Onsager type, represented by these hidden 
variables, couple in an isotropic and scalar manner with the network (relaxation mode coupling model). 
The time dependence of the nominal force is characterized by a relaxation time distribution that is 
independent of strain and of the deformation mode. In the thermodynamic limit the strain-energy of the 
network is the fundamental state of reference even at large strains. In the rubbery region the Williams- 
Landel-Ferry (WLF) equation describes thermorheological simple behaviour. In the glass transition region, 
the WLF-shift procedure fails when the mean relaxation time becomes large (WLF boundary). A specific, 
but universal modification of the WLF-shift procedure due to the strain-induced process of polymer 
segments changing place is observed and results in a unique frequency-temperature relationship (elastic 
and rheological simple behaviour). 
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I N T R O D U C T I O N  

To improve our understanding of the vitrification of 
amorphous polymers, we present research about large 
deformations of permanent networks carried out in 
the rubbery state and in the glass transition region. 
Stress-strain cycles, performed at various temperatures 
and different strain rates, reveal universal features of 
solidification. 

The time-dependent phenomena of rubbers observed 
in stress-strain cycles at different temperatures and 
under different strain rates 1'2 are well understood within 
the framework of the thermodynamics of irreversible 
processes 3-6. The Gibbs function of a van der Waals 
network, as used for the description of equilibrium 
stress-strain curves, is extended by an adequate set of 
hidden variables 7-9 to describe non-equilibrium states as 
well. The relaxation time spectrum t°, defined by these 
hidden variables, characterizes elementary relaxation 
processes. These processes are coupled with the network 
in a linear and scalar form (relaxation mode coupling 
model). The treatment leads to the consequence that the 
relaxation time spectrum is strain invariant. The relaxa- 
tion time spectrum, measured at small distortions under 
shear ~ 1, defines the memory function which is indepen- 
dent of strain and of the deformation mode. This memory 
function typifies each individual network. The network 
itself shows thermorheological simple behaviour. This 
particular situation allows us to calculate stress-strain 
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cycles of networks at each temperature at different strain 
rates up to large strains 12'13. 

Within the glass transition region, stress-strain cycles 
become increasingly non-linear the lower the initial 
sample temperature. It is of interest to reveal the reason 
for this phenomenon. The WiUiams-Landel-Ferry (WLF) 
method 14'15 proposes that the relaxation mechanisms 
should always behave in a similar fashion 16. To defend 
this hypothesis, we should keep in mind that the master 
curve construction includes relaxation processes for the 
shortest periods of time in the glassy state and for the 
longest periods of time in the rubbery state. The glass 
transition region includes all the processes in between. 
Therefore, there is no logical reason to expect new 
relaxation mechanisms during deformation in the glass 
transition region. Under these circumstances, it appears 
to be justified to apply the relaxation mode coupling 
model in this temperature range. This paper represents a 
first step in developing a phenomenological description 
of the strain-rate dependent deformation of networks in 
the rubbery state and in the glass transition region. We 
do not try to explain the formation of a neck 17,xs. 

THE EQUILIBRIUM STRESS-STRAIN CURVE 
OF RUBBER 

In order to describe non-equilibrium states or deviations 
from equilibrium, we have to define the corresponding 
equilibrium state first. Our aim is to look at the relaxation 
behaviour of highly stretched networks, so we need a 
description of equilibrium stress-strain curves that yields 



good accordance with experiments over the whole range 
of applied strain. For this reason, we use the model of 
the van der Waals network. From the strain energy 
function W of the van der Waals network2: 

W(2)=-G{2C~m[ln(1-~l)+rl]+~aq~().)3/2}=Gw(2) (1) 

the nominal forcefis obtained by differentiating W with 
respect to the macroscopic strain 2 = L/Lo (where Lo is 
the initial length of the sample, and L is the length during 
deformation): 

f (2)= ~W(2)=GD(2)[3----~ 1 1 r/-- a~bl/2(~')] (2) 

In the mode of simple extension ~b(2) is given by: 

q5(2) = ~ 2 2 + 2 - 3  ) 2  (3) 

Equations (1) and (2) use the terms ~bm=~b().m), 
r/= x/q~(2)/~brn and the deformation function: 

D(2) = d,~b().) (4) 

The first of the strain independent van der Waals 
parameters, the maximum strain 2m, defines the maximum 
chain extensibility in networks with finite chain length. 
It interrelates the molecular weight Me of the polymer 
chain between two crosslinks with M,: 

M¢=M.22m (5) 

where M. is the molecular weight of the stretching 
invariant unit of the polymer chain. The second van der 
Waals parameter a characterizes global interactions 
between the network chains l'ls. The shear modulus G 
of a permanent network ~9 is given by: 

pRT 
G = - -  (6) 

M.).2m 

where R is the gas constant, T is the absolute temperature 
and p is the density of the polymer. As seen from 
Figure 1, the equilibrium stress-strain curve computed 
with equation (2) reproduces the experimental data very 
accurately. Hence, if the fundamental network para- 
meters M., 2,. and a are known, the equilibrium state of 
reference is well defined. 
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A NON-EQUILIBRIUM DESCRIPTION OF 
STRAINED NETWORKS 

In equilibrium thermodynamics, a system is fully deter- 
mined by a Gibbs function in its natural variables 2°. The 
differential of the Gibbs free energy density of a 
permanent network at constant pressure is written as: 

dg = - s d T +  fd~ (7) 

where s is the entropy density. The last term is the energy 
form which describes the work exchanged under constant 
volume conditions. For networks, equation (7) was shown 
to be correct up to large strains 2. 

Using the assumption that networks cannot be forced 
into states which are far from equilibrium, linear material 
equations are applicable. We are then allowed to use the 
thermodynamics of irreversible processes. The differential 
of the Gibbs free energy density 7 is extended by 
introducing a set of time- and temperature-dependent 
hidden variables ~i (ref. 3): 

dg= -sdT+fd2-~Aid~i (8) 
i 

Relaxation processes are described by the time depend- 
ence of these hidden variables. Considering polymer 
networks, it is crucial that the relaxation mechanisms 
should be coupled with the strain energy of the network. 
An adequate formulation of this relaxation mode coupling 
starts by defining a Gibbs free energy density for 
isothermal and isobaric conditions by the homogeneous 
quadratic form2: 

#=  f2ow().)+ f ~ , T  ~/_,Jo2~i (9) 
i 

where the second term on the right-hand side represents 
the coupling of the relaxation modes to the network. The 
relaxation of the ith process shall now satisfy the linear 
Onsager equation: 

~ = oqA i ( 1 0 )  

where Ai is the generalized force or affinity of the ith pro- 
cess which characterizes the distance to equilibrium 5"7's. 
In equilibrium all Ai are zero. The term ot~ is a 
material-dependent coefficient and ~ are the generalized 
fluxes 3 which are the conjugated variables to the A~ terms. 
The combination of equations (9), (10) and the internal 
equation of state ('chemical equation of state'): 

t3g 
A,= --(~ii)2, T,p (11) 

yields a differential equation for the ~(t). This differential 
equation is solved in reference 13. The solution eliminates 
the ~i in the mechanical equation of state: 

dg 

This leads to an expression for the nominal force f1'13: 

1 t VWft,i]l/2 )~ 
f(t)=W'(t)(l+F{1--~fomO(t-t')L~J dt'~) 

(13) 

where F = G , - G  is the relaxation strength, G, is the 
maximum modulus, observed at the highest frequencies 
[Gg=G(co--.oo)] and W'(t)=dzW[~.(t)]. The memory 
function, mr(t- t'), is defined by the normalized relaxation 
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time spectrum (Figure 2): 

mG(t_t , )=Zhiexp~ (t--t'!] (14) 
zi L z~ d 

where h i is the relative weight of the ith process in the 
normalized spectrum and zi is the relaxation time. h i and 
z i are combined with the ~i by the relation hJzi = ftl~2cti. 
The relaxation time spectrum is derived from the 
measurement of the dynamic modulus G(og) with the 
Schwarzl-Stavermann approximation 11. Every variable 
in equation (13) is determined by experiment so that no 
fitting parameter is left. 

From the relaxation mode coupling model in the 
Onsager version follows that the relaxation spectrum is 
strain invariant and does not depend on the type of strain. 
Despite the fact that each of the relaxation modes is 
coupled with the equilibrium state of reference and 
despite the fact that the mechanical equation of state 
behaves non-linearly with respect to the macroscopic 
strain, relaxation is still treated as a linear response which 
satisfies a generalized version of the superposition 
principle. 

THE TEMPERATURE DEPENDENCE OF THE 
RELAXATION PROCESSES 

As long as the shape of the relaxation time spectrum does 
not change with temperature (thermorheological simple 
conditions), Williams, Landel and Ferry defined an 
empirical relationship, the WLF equation 11, which 
outlines the congruent shift of every discrete relaxation 
time at temperatures above the glass transition: 

C I ( T -  Ts) 
log a T = (15) 

C2+ T - T  s 

Stress-strain cycles of PMMA networks are well described 
above the glass transition with equation (13) after the 
relaxation time spectrum and the parameters C1, C2 and 
T s of equation (15) are determined by experiment. In our 
case C1=6.34, C2=63.62 and Ts=416.5K. The calcu- 
lation (Figure 3) is carried out with a strain-independent 
relaxation time spectrum. The time-temperature relation- 
ship is is valid despite each of the relaxation mechanisms 
being coupled with the network. This underlines a 
certain autonomy of the elementary relaxation processes. 
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Figure 2 Relaxation time spectrum of the PMMA network of Figure 1 
at 416.5 K 
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Figure 3 Experimental (D)  and calculated ( - )  stress-strain cycles of  
the P M M A  network at 413K and at a strain rate ~= I .3  x 10-=s - t  
(parameters and relaxation spectrum as given in Figures / and 2) 

These processes are supposed to obey the Onsager 
relationship [equation (10)]. 

It is an important fact that the relaxation time spectrum 
of the network is deduced from small strain experiments 11. 
A master curve is constructed with a broad frequency 
range including very short relaxation times by using the 
empirical shift procedure according to the WLF equation. 
The whole set of relaxation modes is thermally activated. 
To construct a master curve is equivalent to assuming 
that the thermal activation of high frequency processes 
follows the same rules as for those ones in the low 
frequency region. Because of this remarkable symmetry, 
every deviation from the WLF behaviour must be 
explained by additional effects like strain-induced activa- 
tion. These considerations facilitate the following discus- 
sion where we propose how relaxation in the glass 
transition region may be treated. 

THE WLF REGIME 

Above the glass transition temperature, the whole set of 
relaxation modes is thermally activated. A crucial 
question is where the thermal activation and the WLF 
procedure fail depending on strain rate 21'22. Strain- 
induced activation should play an increasing role when 
the relaxation times are shifted to values which are much 
larger than the ones in the time window of experiment. 
The WLF equation includes its limiting temperature 11'z3, 
the Vogel temperature T O . Below that temperature, the 
process of polymer segments changing place can no 
longer be thermally activated. This statement corres- 
ponds to imagining a rigid body with each molecular 
unit embedded in a harmonic potential, so that the units 
are fully localized. If we now ask for the limits of the 
WLF equation, this is equivalent to regarding the 
segments of a polymer chain as being located in a 
potential of finite height. For this reason, the process of 
polymer segments changing place can be enforced in the 
glass transition region and in the glassy state under 
applied strain. 

First let us find out where the WLF equation is 
applicable. If we compare experimental stress-strain 
curves with calculations [using equation (13)] for various 
temperatures and strain rates, we are able to identify 
where the theory gives an exact description of the 
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experimental stress-strain cycles depending on the two 
variables k and T. Looking at the k -  T plane (Figure 4), 
we obtain good accordance between experiment and 
calculation in region I (WLF regime) if the fundamental 
network parameters, the relaxation time spectrum and 
the corresponding WLF parameters are known. Calcu- 
lations prove that we need the spectrum as a whole. Every 
relaxation mode is in operation. The triangles in Figure 
4 represent measurements at a certain temperature and 
strain rate where the calculation of the stress-strain 
curves is accurate (triangles which lie within region I were 
omitted for clarity). For  lower temperatures or larger 
strain rates, however, we recognize a systematic deviation 
of the theory from the experimental curves. Therefore, 
these triangles represent the strain rate dependent limit 
of application of the WLF equation. This limit is 
described by the expression: 

- l o g k - - -  logeo 
T -  T* 

and 

/ A \  
~ - 1  =/~o'- 1 exP~T -_-T, ) (16) 

The triangles lie on curve (1) in Figure 4, which is 
computed using equation (16) and the parameters 
T* = 352.88 K, A = 928.77 K and log ko z = - 6.36. For  an 
explanation of equation (16) and for the following 
discussion it is useful to change to the Vogel-Fulcher 
equation ~ ~.23: 

( z ) =  (Zo)exP(T---~To) (17) 

This is equivalent to the WLF equation. The parameters 
of equation (17), which are directly deduced from the 
WLF equation, are B=919.78K,  l o g ( z o ) = - 6 . 3 0  and 
T O = T*. Within the limits of accuracy, the parameters in 
equation (17) turn out to be identical to those obtained 
using equation (16). We learn that the boundary of 
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curve 

4- k ' ~ ' ~  (1) I 

1 I I I  
l ib ""A '". 

0 ............ iiiill) 
105 ' 110 ' 115 ' 1½0 ' 1½5 ' 150 ' 135 ' 1~10 ' 145 

T/°C 

Figure 4 Logarithmic plot of the strain rate de/dt versus the absolute 
temperature T. Regime I is the WLF regime. In regimes II and III 
characteristic deviations with respect to WLF behaviour are found. In 
regime II every extension occurs quasi-homogeneously, while a neck 
is always observed in regime III; below the data points (O) the sample 
is heated up during extension. Curve (I) is calculated with equation 
(16) (A =928.77 K, log~ o ~ = -6.36) 

application of the WLF equation is characterized by the 
relationship: 

~(~) = 1 (18) 

that is correct over more than three decades of ~ (Figure 
4). We therefore conclude that thermal activation deter- 
mines the relaxation behaviour of the whole set of 
relaxation modes as long as the mean relaxation time 
( z )  is shorter than or equal to the representative 
experimental period of time. In region I, the process of 
polymer segments changing place is only due to thermal 
activation. All relaxation modes run as in a polymer 
liquid where molecular segments or larger units are not 
strictly localized. A network displays locally the properties 
of a viscoelastic polymer liquid. However, the relaxation 
mechanisms are forced to co-operate due to being linked 
with the network. If one extends the network to the same 
maximum strain, the unloading curves (at different 
temperatures as well as at different strain rates) cross 
over at a defined point on the quasi-static equilibrium 
curve (Figures 5 and 6). Therefore, we conclude that the 
scalar and isotropic coupling of the relaxation modes 
with the network, that is identical for each mode, 
synchronizes the whole set of relaxation mechanisms in 
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the WLF regime. Every relaxation mode should always 
show the same strain-induced distance to equilibrium. 
This explains why they simultaneously cross over the 
equilibrium stress-strain curve at a single point. The 
quasi-static stress-strain curve is directly identified as the 
correct state of reference. 

THE GLASS TRANSITION REGION 

According to Figure 4 the regime beyond the WLF 
boundary is divided into regimes II and III. In any case, 
relaxation is enhanced with increasing distance to the 
WLF boundary. In regime II, the stress-strain pattern 
does not yet show a maximum at small strains, while this 
is typical in regime III (Figures 6 and 7). The appearance 
of the maximum in the stress-strain curve is accompanied 
with the formation of a neck. The deformation process 
then runs heterogeneous. Let us first describe the 
boundary line between regimes II and III in Figure 4 
(curve (2)], the limit of mechanical stability. As long as 
deformation runs quasi-isothermal, the boundary line 
between II and III is described by equation (16) using 
the same A and log ko z as in the WLF regime. Only the 
reference temperature T* must be reduced by 3.5 K. 
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Figure 7 Stress-strain pattern of a PMMA network drawn in regime 
III with a strain rate k = 7.2 x 10 -4 s- 1 at 390 K. Curve (1) is computed 
using the WLF relation. The theoretical curve (2) is computed using 
the shift factor log aT = 3.82 
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Figure 8 Empirical shift factors ofa PMMA network in the temperature 
region of the glass transition for various strain rates 
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Figure 9 Master curve of the deviation of the shift factor for a PMMA 
network in regimes II and III. The solid line is a fit with a third-order 
polynomial 

Non-isothermal deformation seems to be the cause for 
the systematic discrepancies between calculation and 
experiment at large strain rates (broken lines in Figure 4). 

A representative example of a stress-strain cycle 
observed in regime III is shown in Figure 7. With the 
WLF parameters deduced in regime I we are able to 
reproduce the measurement at small extensions [Figure 7, 
curve (1)]. At strains of a few per cent, yielding occurs. 
After the neck is formed, we are able to describe the 
stress-strain cycle [curve (2)] in Figure 7. The shift factor 
has to be adjusted to a lower value as predicted by the 
WLF equation. The whole stress-strain pattern except 
the peak area is well described including the unloading 
curve. At sufficiently high strains the network displays 
thermorheological simple behaviour with a defined 
time-temperature relationship. 

TH E SHIFT PROCEDURE IN TH E GLASS 
TRANSITION RANGE 

Owing to the continuous process of vitrification it is 
expected that segmental motions are not only thermally 
but also elastically activated 24-27. We want to prove that 
the relaxation time spectrum behaves in an elastically and 
rheologically simple fashion. If this holds true, the whole 
set of relaxation times is also uniformly shifted. The 
temperature-frequency relationship should be modified 
due to the influence of elastic effects. 

In Figure 8 'stationary' shift factors are plotted for 
different strain rates against temperature. Independent 
of whether a neck is formed or not, these shift factors 
show the same characteristics. To confirm this we define 
for each strain rate, de/dt, just that temperature, TwLr 
(de/dO, below which the WLF procedure fails. To 
compare the various curves, each one is rescaled to 
an arbitrarily chosen temperature of reference TWLF.0 
(deo/dt). According to equation (19), TWL F is given as a 
function of the strain rate by: 

( TWLF(~)= T*- -A log (19) 

We arrive at the master curve illustrated in Figure 9. The 
master curve can be described by a third-order polynomial. 

This systematic shift-factor reduction in regimes II and 
III must have deeper physical reasons. First, relaxation 
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in the glass transition region is at sufficiently large strains 
thermorheologically simple. Here the shape of the 
relaxation spectrum remains unchanged. A frequency- 
temperature relationship is defined. The congruent shift 
of all the relaxation times indicates that thermal- and 
strain-induced activation both modify the relaxation 
times in the same manner. According to Ferry 11 this 
should be influenced by a thermodynamically well 
defined increase of free volume during deformation. 

In the stationary regime of larger strains each of the 
relaxation modes is dynamically equivalent. Each mode 
is forced into the same distance from equilibrium. The 
equilibrium state of reference is defined by the quasi-static 
strain-energy of the van der Waals network. The glassy 
state of a permanent network is therefore understood as 
a highly co-operative freezing process that defines a solid 
state with a well defined distance to equilibrium. This 
distance is characterized by a set of hidden variables. 

For reasons of consistency we should be allowed to 
describe the whole stress-strain pattern in Figure 7 
[curve (2)] by fitting the shift factor in order to reproduce 
the maximum 1~. It can be shown that in regime III the 
relaxing network becomes unstable beyond the stress 
maximum because the relaxation rates increase due to 
the large quantity of stored strain energy. In the glassy 
state, deformation occurs by forming a neck. This 
interesting fundamental phenomenon will be discussed 
in a subsequent paper. 

NON-ISOTHERMAL DEFORMATION 

With an i.r. camera we have measured the surface 
temperature during extension 28'29. The temperature is 
raised in the regime below the open circles shown in 
Figure 4. Therefore we have isothermal conditions in the 
area above these circles and non-isothermal conditions 
below the circles. This would not change the topologic 
features of our representation except for a small systematic 
decrease in the shift factor in the non-isothermal regime. 

CONCLUSIONS 

The results presented show many symmetries that 
characterize large deformation in networks. A permanent 
network is in the thermodynamic limit fully described up 
to large strains if the fundamental van der Waals 
parameters of equation (1), Mu, 2m and a, are known. A 
van der Waals network is typified as a weakly interacting 
conformational gas. Fluctuations of the network junc- 
tions indicate stochastic interactions between neigh- 
bouring chains. The network is an entropy-elastic system. 
This is the reason why the strain-energy is equipartitioned 
among network chains of different lengths. The PMMA 
networks show a broad chain length distribution. Thus, 
every deformation must be inhomogeneous on a local 
level, because non-Gaussian chains of different lengths 
are individually deformed to satisfy equipartition of 
energy. At sufficiently large strains these characteristics 
are not changed in the glass transition region. 

The equilibrium state of the network is in the stationary 
regime always the state of reference. Because a network 
can only be forced to small distances with respect to the 
equilibrium state, thermodynamics of irreversible pro- 
cesses is applied to describe non-equilibrium states and 
to formulate a constitutive equation which includes the 
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thermodynamic limit. A set of elementary relaxation 
processes in the Onsager version is defined. It is 
characteristic for networks that these relaxation modes 
are linked with the network. This is the reason why all 
relaxation processes are strictly synchronized during 
deformation. The network itself defines a 'global level'. 
Its predominant role is thermodynamically determined. 
The time-dependent response is characterized by a 
memory function in the classical version of linear systems. 
In the rubbery state the relaxation time spectrum does 
not depend on the applied strain or on the strain rate 
and shows thermorheological simplicity. This holds true 
up to large strains. The WLF equation is appropriate for 
describing the temperature-induced shift of the relaxation 
time spectrum for temperatures above the glass transition 
temperature. 

In the time-temperature space, the WLF regime is 
limited by a well defined boundary. This boundary is 
given by the condition ~(z) = 1. The shift factor modifi- 
cation of the time-temperature relationship displays 
universal features even in regimes II and III. This is 
manifested by the existence of a universal scaling law for 
all strain rates (Figure 9). The relaxation behaviour at 
large strains remains thermorheologically simple with the 
same relaxation time spectrum as in the rubbery state. 
The relaxation processes are also strictly synchronized, 
controlled from the global level. Hence, activation of the 
process of polymer chain segments changing place must 
be identical for each relaxation process. The individual 
response is controlled by these symmetries enforcing for 
example necessarily an individual state of relaxation for 
each different relaxation mode to always adjust the same 
relative distance to equilibrium. 

This relaxation mode coupling model appears to be 
adequate to describe the universal features of relaxation 
at large strains in the rubbery state as well as in the glass 
transition region. The memory function as a manifestation 
of the linear Onsager equation is typical for polymer 
networks. It is impossible even in the glass transition 
region and under large extensions to bring a network in 
a large distance to equilibrium. The time-dependent set 
of constraints, as represented by the hidden variables, 
guarantees the necessary homogeneity. In this situation, 
any attempt to identify the molecular processes, repre- 
sented by the phenomenological relaxation time spectrum, 
is of interest. 
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